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Geometric cluster Monte Carlo simulation
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We discuss a cluster Monte Carlo algorithm for lattice models, based on geometric transformations. We
prove detailed balance when the transformation is self-inverse, and a symmetry of the Hamiltonian. This
algorithm opens new possibilities, in particular for the efficient simulation of critical model systems, where the
Metropolis method suffers from critical slowing down. We illustrate the generality of our method by applica-
tions to the Ising model in the constant-magnetization ensemble, and to the tricritical Blume-Capel model.
@S1063-651X~98!00905-2#

PACS number~s!: 05.50.1q, 02.70.Lq, 64.60.Ht
a
f
on
ty
e
t

u
.
e
fo
te
rlo
it

to
e

ve
re

n
ar
s
m

p

lf

nd

dis-
ly,

It
he
s

se.
and
p-

rco-
not

.
to

per-
in-
are

ss
m.
The Monte Carlo simulation of a lattice model with
dynamic exponentz and sizeL in d dimensions requires o
the order ofLd1z operations to generate an independent c
figuration. For local Metropolis-type updates at criticali
typically z'2: the simulation time increases rapidly with th
system size. This ‘‘critical slowing down’’ makes it difficul
to explore large critical systems.

This problem was partly solved after a breakthrough d
to Swendsen and Wang@1#: the cluster Monte Carlo method
Instead of a single spin, a whole cluster of spins is flipp
simultaneously. The construction of these clusters can be
mulated as a critical percolation process, so that also clus
of relatively large sizes can be formed. This Monte Ca
process has a nonlocal character, and suppresses cr
slowing down.

The Swendsen-Wang algorithm was originally applied
the ferromagneticq-state Potts model, which includes th
Ising model. A number of related algorithms has been de
oped, but their applicability is limited to models that a
symmetric under inversion or permutation of spin states.

In this paper, we formulate a cluster algorithm in the co
text of more general symmetries of the Hamiltonian. In p
ticular, we use geometrical symmetries that map the site
a lattice model onto one another. To display the role of sy
metries, we first recall the Wolff version@2# of the
Swendsen-Wang method. We use the language of the s
1
2 Ising model with pair interactions2Ksisj , but the method
described below is more generally applicable. One Wo
step involves the following:

~1! Choose a random lattice site; denote iti .
~2! si852si ~flip spin i ).
~3! For all neighbor sitesk of i do the following.

~a! If sk52si8 do the following with probability 1
2e22K: ~i! sk852sk ~spink included in cluster!; ~ii ! write k
in a list of addresses~called stack!.

~b! If sk5si8 , do nothing.
~4! Read an addressj from the stack.
~5! Execute the steps listed under~3! for the neighbor

sitesk of j .
~6! Erase the addressj from the stack.
~7! Repeat steps~4!–~6! until the stack is empty. When

the stack is empty, the Wolff cluster is completed a
flipped.
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The proof that this process generates the Boltzmann
tribution relies on the condition of detailed balance, name

T~S,S8!Peq~S8!5T~S8,S!Peq~S!, ~1!

whereT(S,S8) denotes the probability of a Wolff step from
a spin configurationS8 to S, andPeq is the Boltzmann dis-
tribution. The proof of this condition@2# hinges on a sym-
metry of the Hamiltonian: the spin inversion symmetry.
also uses the fact that this symmetry is its own inverse. T
Wolff algorithm does not work in a field, and for lattice-ga
models, where the spin inversion symmetry is absent.

However, there are other symmetries that one may u
Investigating hard-core gases in continuous space, Dress
Krauth @3# developed a cluster method using geometric o
erations on the particle positions. For hard disks, the pe
lation threshold of the cluster formation process does
coincide with the phase transition of the model@3#. This is
unfortunate since it affects the efficiency of the algorithm

We applied the idea of using geometric symmetries
lattice models, hoping that the phase transition and the
colation threshold coincide. We may employ reflections,
versions, translations and rotations, provided that these
self-inverse, and global symmetries of the Hamiltonian.

We formulate the geometric cluster formation proce
here such as to expose the analogy with the Wolff algorith
Let sitesi , j , andk map oni 8, j 8, andk8 under the sym-
metry transformation. We denote the energy difference~di-
vided bykT) when a neighbork of i is interchanged withk8
as D ik . For the Ising model,D ik5K(sisk1si 8sk82sisk8
2si 8sk). The algorithm involves the following steps:

~1! Choose a random lattice sitei ; i and i 8 belong to the
cluster.

~2! Interchangesi andsi 8.
~3! For all neighbor sitesk of i that do not~yet! belong to

the cluster, do the following.
~a! If D ik.0 do the following with probability 1

2e2D ik: ~i! interchangesk andsk8(k andk8 included in clus-
ter!; ~ii ! write k in a list of addresses~the stack!.

~b! If D ik<0, do nothing.
~4! Read an addressj from the stack.
~5! Execute the steps listed under~3!, substitutingj for i .
~6! Erase the addressj from the stack.
~7! Repeat steps~4!–~6! until the stack is empty.
4976 © 1998 The American Physical Society
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57 4977GEOMETRIC CLUSTER MONTE CARLO SIMULATION
When the stack is empty, the cluster is completed a
moved. Consider the probabilityT(S8,S) of a cluster move
that transforms a spin configurationS into S8 by moving the
spins contained in the geometric clusterC. We verify that the
condition of detailed balance,

T~S,S8!

T~S8,S!
5expFE~S8!2E~S!

kT G , ~2!

is satisfied. The energy changeE(S8)2E(S) is due to pair
interactions between spins insideC and those outside. It con
sists of a positive contributionE1(C,S) due to pair interac-
tions whose energies increase whenS changes intoS8, and a
negative contribution2E2(C,S) due to pair interactions
whose energies decrease. We write the probability of
cluster move asT(S8,S)5Ti(C,S)Tb(C,S). The ‘‘internal’’
factor Ti is the probability that the cluster connects to
sites withinC. The ‘‘boundary’’ factorTb is the probability
that the cluster doesnot include spins outsideC. Ti depends
only on spins inC. According to the above cluster formatio
rules,Tb(C,S)5exp@2E1(C,S)/kT#. The reverse process sa
isfies T(S,S8)5Ti(C,S8)Tb(C,S8). The first factor equals
Ti(C,S) because the operation is self-inverse, and a sym
try of the system. Moreover, Tb(C,S8)
5exp@2E1(C,S8)/kT] 5exp@2E2(C,S)/kT#. Thus

T~S,S8!

T~S8,S!
5expFE1~C,S!2E2~C,S!

kT G . ~3!

The definitions ofE1 andE2 imply thatE(S8)2E(S)5E1~C,
S)2E2~C,S) so that detailed balance, Eq.~2!, is indeed sat-
isfied.

These ideas have, in part, already been applied to h
core lattice gases@4#. For these models the energy chan
D ik is either zero or infinite, so that the probabilities are 0
1 and the cluster formation process becomes determin
after step 1. It reduces to a special case of the algori
given above. Histograms of the cluster size distributi
taken at criticality, appeared to scale withLyh, whereyh is
the Ising magnetic exponent. This is the same behavior a
Wolff clusters in the Ising case. Thus, for these lattice gas
the percolation threshold of the geometric clusters co
sponds with the phase transition. In line with this obser
tion, critical slowing down is effectively suppressed@4#.

However, the presence of finite couplings modifies
cluster formation, and it is not clear that the process rema
on the percolation threshold. Thus we applied the algorit
to critical ferromagnetic Ising models in two and three
mensions. The magnetization density was initialized asm
50 and is conserved. Using the Wolff scaling factorLyh, we
again observed that histograms of the geometric cluster
collapse well. Figure 1 shows the result for the tw
dimensional case.

We proceed by sketching a proof that the cluster si
scale similarly as in the Wolff case, i.e., the percolati
threshold coincides with the phase transition. Fold the Is
model such thatsi and si 8 form adjacent pairs in the (d
11)th dimension: an Ashkin-Teller model at the decoupli
pont. The numbers of such pairs areN11 , N12 , N21 ,
andN22 ; the subscripts refer to the signs ofsi andsi 8. The
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critical Ising susceptibility x54N21^(N112N22)2& is
proportional toL2yh2d. We neglect the coupling of the shee
containingsi andsi 8 via the boundary conditions. Up-dow
symmetry then leads to

N21^~N122N21!2&}L2yh2d. ~4!

Next, divide the Ising lattice into geometric clusters, a
ignore those consisting of two equal spins. Each remain
cluster consists of1 spins in one sheet and2 spins in the
other. Its size is denotednk(k51,2, . . . ,M ), and the sign of
its spins in the upper sheet aspk . Thus, N122N21

5(knkpk . The signspk561 are equally probable, so tha

N21^~N122N21!2&

5N2122MK (
p1561

••• (
pM561

S (
k

nkpkD 2L
5N21K (

k
nk

2L . ~5!

Since the probability to select a cluster isnk /N, Eq. ~5! is
just the average cluster size produced by the geome
method; as in the Wolff case, it is proportional toL2yh2d.
This confirms the critical percolation property of the geom
ric algorithm, and its power to suppress critical slowin
down.

While the efficiency of this algorithm is comparable wi
the Wolff algorithm, its applicability is different because
samples the constant magnetization ensemble: the mag
field does not enter the simulation algorithm. An example
a possible application is the determination of the simu
neous probability distribution of the magnetization and t
energy, which may be used@5# to find the distribution of
Lee-Yang zeros@6# at nonzerom, and to calculate thermo
dynamic observables@7#.

As a further test, we calculate the fieldh(m) from fre-
quencies of ‘‘local states’’@8#, at different magnetizationsm.

FIG. 1. Scaled histograms of cluster sizes in a simulation at z
magnetization of the critical two-dimensional Ising model. Size2

is shown by a full line, 162 by a dotted line, 322 by a dashed line,
and 642 by long dashes.
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Results for a 163 simple cubic Ising model are shown in Fig
2. For comparison, the canonical relationm(h) was obtained
from reweighted Wolff~for small h<0.01) and Metropolis
simulations~for >0.01). The agreement is good at largem;
for small m, fluctuations are important and differences a
visible.

Finally, the geometric cluster method was applied to
Blume-Capel model on the simple cubic lattice. The sp
assume the values61 and 0; an additional energyDkT is
assigned to each nonzero spin:

H/kT52K(
^ i , j &

sisj1D(
k

sk
2 . ~6!

This model can be simulated by combined Wolff and M
tropolis steps@9#. However, for largerD a tricritical point
occurs where large fluctuations occur in the number of
cancies~spins with value 0!, and critical slowing down reap
pears.

Preliminary work @10# locates this tricritical point nea
K50.7194, D52.05, where the density of the vacancies
rvac'0.61. In addition toK, we used the density of the va
cancies~and not the conjugate parameterD) in order to fix
the position of the system in the phase diagram. After init
ization, rvac50.61 remains constant, just as the magneti
tion that was chosen remainsm50. The value ofD may be
determined from local states in analogy withh(m). The av-

FIG. 2. Magnetic fieldh as a function of the magnetizatio
densitym for a 163 Ising model~data points!, calculated from local
states in cluster simulations at constant magnetization. Also sh
is the canonical magnetization as a function of the magnetic fi
~dashed curve!, obtained by conventional Monte Carlo methods.
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erage cluster size appears to grow algebraically withL,
which indicates that again the process occurs near the pe
lation threshold.

Figure 3 displays energy relaxation times at the estima
tricritical point, for single spin updates as well as for the ne
cluster method. In both cases we chose the time unit as
number of steps needed to update or moveL3 spins. Thus,
the ‘‘work’’ per unit of time is of the same order. For singl
spin updates we find a dynamic exponent of aboutz52.2.
The cluster method yields an effective exponent ofz50.21
in the range 12,L<24: again, critical slowing down is
small. The resultz50.21 seems to violate the Li-Sokal@11#
boundz>a/n51 ~for a5n50.5). However, the conserva
tion of rvac suppresses energy fluctuations and the canon
tricritical valuea50.5 does not apply.

In conclusion, our results show that the geometric clus
algorithm effectively suppresses critical slowing down,
least for a number of Isinglike models. It opens new pos
bilities for applications to models that were, until now, ou
side the reach of cluster simulations. Furthermore, one m
investigate different ensembles, for instance, the cons
magnetization ensemble in the case of the Ising mo
While the efficiency of new applications to critical system
still depends on the question of whether the geometric c
ters are formed at the percolation threshold, the results
sented here are promising.

H.B. is indebted to Professor J.M.J. van Leeuwen for
elucidating comments.
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FIG. 3. Autocorrelation timest of the energy~nearest-neighbor
sum! for single-spin updates~circles! and for the geometric cluste
method ~squares! vs system size, using logarithmic scales. T
straight lines correspond with dynamic exponentsz52.2 and with
z50.21.
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